Kabsch algorithm

Find the rigid transformation & Least Root Mean Square distance between two paired sets of points
3,4K téléchargements
Mise à jour 9 juil. 2013

Afficher la licence

% Find the Least Root Mean Square between two sets of N points in D dimensions
% and the rigid transformation (i.e. translation and rotation)
% to employ in order to bring one set that close to the other,
% Using the Kabsch (1976) algorithm.
% Note that the points are paired, i.e. we know which point in one set
% should be compared to a given point in the other set.
%
% References:
% 1) Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta Cryst A 1976;32:9223.
% 2) Kabsch W. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Cryst A 1978;34:8278.
% 3) http://cnx.org/content/m11608/latest/
% 4) http://en.wikipedia.org/wiki/Kabsch_algorithm
%
% We slightly generalize, allowing weights given to the points.
% Those weights are determined a priori and do not depend on the distances.
%
% We work in the convention that points are column vectors;
% some use the convention where they are row vectors instead.
%
% Input variables:
% P : a D*N matrix where P(a,i) is the a-th coordinate of the i-th point
% in the 1st representation
% Q : a D*N matrix where Q(a,i) is the a-th coordinate of the i-th point
% in the 2nd representation
% m : (Optional) a row vector of length N giving the weights, i.e. m(i) is
% the weight to be assigned to the deviation of the i-th point.
% If not supplied, we take by default the unweighted (or equal weighted)
% m(i) = 1/N.
% The weights do not have to be normalized;
% we divide by the sum to ensure sum_{i=1}^N m(i) = 1.
% The weights must be non-negative with at least one positive entry.
% Output variables:
% U : a proper orthogonal D*D matrix, representing the rotation
% r : a D-dimensional column vector, representing the translation
% lrms: the Least Root Mean Square
%
% Details:
% If p_i, q_i are the i-th point (as a D-dimensional column vector)
% in the two representations, i.e. p_i = P(:,i) etc., and for
% p_i' = U p_i + r (' does not stand for transpose!)
% we have p_i' ~ q_i, that is,
% lrms = sqrt(sum_{i=1}^N m(i) (p_i' - q_i)^2)
% is the minimal rms when going over the possible U and r.
% (assuming the weights are already normalized).
%

Citation pour cette source

Ehud Schreiber (2026). Kabsch algorithm (https://fr.mathworks.com/matlabcentral/fileexchange/25746-kabsch-algorithm), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2008a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Computational Geometry dans Help Center et MATLAB Answers
Remerciements

A inspiré : Anatomy Transformation Analysis

Version Publié le Notes de version
1.18.0.0

Replaced loops by bsxfun() for efficiency,
as suggested by Daniel Pfenniger (thanks!).

1.17.0.0

24/10/2012 : corrected the check of whether a reflection is needed from
if (det(C) < 0)
to the more numerically stable
if (det(V*W') < 0)
as suggested by Andreas.

1.0.0.0