Simpson's rule for numerical integration

The Simpson's rule uses parabolic arcs instead of the straight lines used in the trapezoidal rule
10,9K téléchargements
Mise à jour 22 mai 2013

Afficher la licence

Z = SIMPS(Y) computes an approximation of the integral of Y via the Simpson's method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment.

Z = SIMPS(X,Y) computes the integral of Y with respect to X using the Simpson's rule.

Z = SIMPS(X,Y,DIM) or SIMPS(Y,DIM) integrates across dimension DIM

SIMPS uses the same syntax as TRAPZ.

Example:
-------
% The integral of sin(x) on [0,pi] is 2
% Let us compare TRAPZ and SIMPS
x = linspace(0,pi,6);
y = sin(x);
trapz(x,y) % returns 1.9338
simps(x,y) % returns 2.0071

Citation pour cette source

Damien Garcia (2026). Simpson's rule for numerical integration (https://fr.mathworks.com/matlabcentral/fileexchange/25754-simpson-s-rule-for-numerical-integration), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2010a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et MATLAB Answers
Version Publié le Notes de version
1.5.0.0

Modification in the description

1.4.0.0

Modifications in the help text

1.2.0.0

Minor modifications in the descriptions and help texts of the two functions.