Simpson's rule for numerical integration
Z = SIMPS(Y) computes an approximation of the integral of Y via the Simpson's method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment.
Z = SIMPS(X,Y) computes the integral of Y with respect to X using the Simpson's rule.
Z = SIMPS(X,Y,DIM) or SIMPS(Y,DIM) integrates across dimension DIM
SIMPS uses the same syntax as TRAPZ.
Example:
-------
% The integral of sin(x) on [0,pi] is 2
% Let us compare TRAPZ and SIMPS
x = linspace(0,pi,6);
y = sin(x);
trapz(x,y) % returns 1.9338
simps(x,y) % returns 2.0071
Citation pour cette source
Damien Garcia (2026). Simpson's rule for numerical integration (https://fr.mathworks.com/matlabcentral/fileexchange/25754-simpson-s-rule-for-numerical-integration), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Remerciements
A inspiré : simpsonQuadrature, VGRID: utility to help vectorize code, Generation of Random Variates
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.5.0.0 | Modification in the description |
||
| 1.4.0.0 | Modifications in the help text |
||
| 1.2.0.0 | Minor modifications in the descriptions and help texts of the two functions. |
