This function performs kernel kmeans algorithm. When the linear kernel (i.e., inner product) is used, the algorithm is equivalent to standard kmeans algorithm. Several nonlinear kernel functions are also provided. Upon request, I also include a prediction function for out-of-sample inference. Please try following code for a demo:
clear; close all;
d = 2;
k = 3;
n = 500;
[X,label] = kmeansRnd(d,k,n);
init = ceil(k*rand(1,n));
[y,mse,model] = knKmeans(X,init,@knLin);
plotClass(X,y)
idx = 1:2:n;
Xt = X(:,idx);
t = knKmeansPred(model, Xt);
plotClass(Xt,t)
This function is now a part of the PRML toolbox (http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox).
Citation pour cette source
Mo Chen (2026). Kernel Kmeans (https://fr.mathworks.com/matlabcentral/fileexchange/26182-kernel-kmeans), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Remerciements
Inspiré par : Pattern Recognition and Machine Learning Toolbox, Kmeans Clustering
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
knkmeans/
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.8.0.0 | tweak |
||
| 1.7.0.0 | fix incompatibility issue due the stupid API change of function unique()
|
||
| 1.6.0.0 | n/a |
||
| 1.5.0.0 | fix a minor bug of returning energy |
||
| 1.2.0.0 | remove empty clusters |
||
| 1.1.0.0 | add sample data and detail description |
||
| 1.0.0.0 |
