Power Law, Exponential and Logarithmic Fit

Finds and plots the linear fit to some data points when plotted on a log scale.
14,1K téléchargements
Mise à jour 22 août 2014

Afficher la licence

logfit(X,Y,graphType), where X is a vector and Y is a vector or a
matrix will plot the data with the axis scaling determined
by graphType as follows: graphType-> xscale, yscale
loglog-> log, log
logx -> log, linear
logy -> linear, log
linear -> linear, linear
A line is then fit to the scaled data in a least squares
sense.
See the 'notes' section below for help choosing a method.
logfit(X,Y), will search through all the possible axis scalings and
finish with the one that incurs the least error (with error
measured as least squares on the linear-linear data.)

Notes:
A power law relationship
[slope, intercept] = logfit(x,y,'loglog');
yApprox = (10^intercept)*x.^(slope);

An exponential relationship
[slope, intercept] = logfit(x,y,'logy');
yApprox = (10^intercept)*(10^slope).^x;

A logarithmic relationship
[slope, intercept] = logfit(x,y,'logx');
yApprox = (intercept)+(slope)*log10(x);

A linear relationship
[slope, intercept] = logfit(x,y,'linear');
yApprox = (intercept)+(slope)*x;

Citation pour cette source

Jonathan C. Lansey (2024). Power Law, Exponential and Logarithmic Fit (https://www.mathworks.com/matlabcentral/fileexchange/29545-power-law-exponential-and-logarithmic-fit), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2010b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Interpolation dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.5.0.0

Added new color option which lets you set the 'color' of both lines and markers with one parameter. Added robustness to NaN values.

1.4.0.0

Updated to use R2 as 'best fit' criterion rather than MSE

1.3.0.0

fixed 'skipbegin' feature functionality

1.2.0.0

Updated to include Mean Squared Error

1.0.0.0