Unsupervised Wiener-Hunt deconvolution

Return the Wiener-Hunt deconvolution of data without tuning parameters.
1,1K téléchargements
Mise à jour 19 déc. 2011

Afficher la licence

udeconv - Unsupervised Wiener-Hunt deconvolution

xEap = udeconv(data, ir, ...)
[xEap, gnChain, gxChain] = udeconv(data, ir, ...)

return the deconvolution of 'data' by 'ir'. The algorithm is a stochastic iterative process (Gibbs sampler) that allow automatic tuning of regularization parameter, see reference below. There is no specific constraints on the number of dimension.

The call [xEap, gnChain, gxChain, xStd] = udeconv(...) allow to compute the diagonal of the covariance matrix around xEap with the cost of an fft at each iteration.

If you use this work, add a citation of the reference below.

Compatible with octave.

PARAMETERS

data -- the data

ir -- the impulsionnal response

OPTIONNALS

Optionnals argument are in the form (..., 'key', val, ...).

'criterion', val -- if the difference between two successive estimate is less than this value, stop the algorithm. Default is 1e-4.

'burnin', val -- number of iteration to remove at the beginning of the chain to compute the mean of the image. Default is typicaly 30.

'maxIter', val -- maximum number of iteration. Default is 150.

OUTPUTS

xEap -- the estimated result

gnChain, gxChain -- the MCMC chain of the regularisation parameters. See reference below.

xStd -- is the standart deviation around the estimate

FUNCTION CALL

xEap = udeconv(data, ir)

[xEap gnChain, gxChain] = udeconv(...)

[xEap gnChain, gxChain, xStd] = udeconv(...)

REFERENCE

François Orieux, Jean-François Giovannelli, and Thomas Rodet, "Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution," J. Opt. Soc. Am. A 27, 1593-1607 (2010)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-7-1593

Citation pour cette source

François Orieux (2024). Unsupervised Wiener-Hunt deconvolution (https://www.mathworks.com/matlabcentral/fileexchange/30880-unsupervised-wiener-hunt-deconvolution), MATLAB Central File Exchange. Récupéré le .

Compatibilité avec les versions de MATLAB
Créé avec R2008a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Image Processing Toolbox dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

package/

Version Publié le Notes de version
1.5.0.0

Update presentation

1.4.0.0

Update presentation

1.2.0.0

hpFilter no more necessary. Some argument are no optionnal. Demonstration file is included.

1.0.0.0