2D polynomial fitting with SVD

Fits a polynomial f(x,y) to best fit the data points z using SVD.
1,6K téléchargements
Mise à jour 14 juil. 2011

Afficher la licence

Use coeffs = fit2dPolySVD(x, y, z, order) to fit a polynomial of x and y so that it provides a best fit to the data z.
Uses SVD which is robust even if the data is degenerate. Will always produce a least-squares best fit to the data even if the data is overspecified or underspecified.
x, y, z are column vectors specifying the points to be fitted.
The three vectors must be the same length.
Order is the order of the polynomial to fit.
Coeffs returns the coefficients of the polynomial. These are in increasing power of y for each increasing power of x, e.g. for order 2:
zbar = coeffs(1) + coeffs(2).*y + coeffs(3).*y^2 + coeffs(4).*x + coeffs(5).*x.*y + coeffs(6).*x^2

Use eval2dPoly(x,y,coeffs) to evaluate the polynomial at any (x,y) points.

If the data is underspecified then the LOWER order coefficients will come out as zero, the solution being a fit using higher orders; use a lower order fit for a more obvious solution in this case.

Citation pour cette source

Richard Whitehead (2026). 2D polynomial fitting with SVD (https://fr.mathworks.com/matlabcentral/fileexchange/31636-2d-polynomial-fitting-with-svd), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2011a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Eigenvalues dans Help Center et MATLAB Answers
Remerciements

Inspiré par : 2D Weighted Polynomial Fitting and Evaluation

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.4.0.0

Minor change to description

1.3.0.0

Fixed typo in error reporting lines

1.2.0.0

Scaling ignored negative values

1.1.0.0

Corrected typos in description

1.0.0.0