4-Nearest Neighbor on iris recognition using randomized partitioning.

Matlab Script to find the 4 - nearest neighbors (kNN) for IRIS dataset
1,5K téléchargements
Mise à jour 15 août 2012

Afficher la licence

% 1: Load iris.mat file which contains Iris data and its label
% seperately.
% 2: Randomize the order of data for each iternation so that new sets of
% training and test data are formed.
%
% The training data is of having size of Nxd where N is the number of
% measurements and d is the number of variables of the training data.
%
% Similarly the size of the test data is Mxd where M is the number of
% measurements and d is the number of variables of the test data.

% 3: For each observation in test data, we compute the euclidean distance
% from each obeservation in training data.
% 4: We evalutate 'k' nearest neighbours among them and store it in an
% array.
% 5: We apply the label for which distance is minimum
% 5.1: In case of a tie, we randomly label the class.
% 6: Return the class label.
% 7: Compute confusion matrix.

Citation pour cette source

lavya Gavshinde (2025). 4-Nearest Neighbor on iris recognition using randomized partitioning. (https://fr.mathworks.com/matlabcentral/fileexchange/37827-4-nearest-neighbor-on-iris-recognition-using-randomized-partitioning), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2012a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et MATLAB Answers
Remerciements

Inspiré par : K Nearest Neighbors

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0.0