Kernel PCA and Pre-Image Reconstruction

Version 3.2 (6,94 Mo) par Quan Wang
standard PCA, Gaussian kernel PCA, polynomial kernel PCA, pre-image reconstruction
18K téléchargements
Mise à jour 15 juin 2023

Kernel PCA and Pre-Image Reconstruction View Kernel PCA and Pre-Image Reconstruction on File Exchange arxiv

Overview

In this package, we implement standard PCA, kernel PCA, and pre-image reconstruction of Gaussian kernel PCA.

We also provide three demos:

  1. Two concentric spheres embedding;
  2. Face classification with PCA/kPCA;
  3. Active shape models with kPCA.

Standard PCA is not optimized for very high dimensional data. But our kernel PCA implementation is very efficient, and has been used in many research projects.

This library is also available at MathWorks:

pic

Citations

If you use this library, please cite:

@article{wang2012kernel,
  title={Kernel principal component analysis and its applications in face recognition and active shape models},
  author={Wang, Quan},
  journal={arXiv preprint arXiv:1207.3538},
  year={2012}
}

Citation pour cette source

Quan Wang (2024). Kernel PCA and Pre-Image Reconstruction (https://github.com/wq2012/kPCA/releases/tag/v3.2), GitHub. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2012b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
3.2

See release notes for this release on GitHub: https://github.com/wq2012/kPCA/releases/tag/v3.2

1.4.0.0

Fixed a fatal bug in pre-image reconstruction.

1.3.0.0

addpath('../code') in demo2

1.2.0.0

We replaces all demos, and the data used for the demo. We also updated the document to provide better illustration and better experiments. Now the code generates exactly the same results as shown in the paper.

1.1.0.0

The efficiency is optimized.

1.0.0.0

Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.
Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.