PSD (Power Spectral Density), and Amplitude Spectrum with adjusted FFT

FFT computes PSD and one sided amplitude spectrum Y[f] of 1d signal
5,8K téléchargements
Mise à jour 4 sept. 2013

Afficher la licence

Function [fy]=FFT(y,Fs)

1)computes the Power spectral density and Amplitude spectrum (P(f),F(f))
of 1d signal y(t) with sample rate Fs (Nyquist rate) which is known% apriori. The results are plotted in 3 figures which correspond to simple
PSD,logarithmic PSD (dB) and Amplitude Specturm respectively.
_____________
Ampitude(f) = \/ PSD(f)

2)The usefulness of this function is the adjustment of the frequency axis.

3)The fast Fourier transform is computed with Matlab built-in function
fft, but for signals whose lengths <1000 points, one can use the nested
function y=Fast_Fourier_Transform(X,N) .

Demo :

Fs=800;
Tf=2;
t=0:1/Fs:Tf;
f=[40 75];
Amp=[4.5 9.22];
sigma=1.33;
y=Amp(1)*exp(j*2*pi*t*f(1))
+Amp(2)*exp(j*2*pi*t*f(2));
N=(sigma/sqrt(2))* (randn(size(t))+j*randn(size(t)));
y=y+N;
figure, plot(t,y),xlabel('time (s)'),ylabel('Voltage (v)'),
title(strcat('Signal corrupted with AWGN, \sigma=',num2str(sigma))),
fy=FFT(y,Fs);

in the M-file Demo_FFT:
1st Part : we compute the spectrum of sinusoidal signal Y(t) with frequency Fc
2nd Part : FFT[Y²(t)]

The demo is adjusted with sample rate Fs>=4*Fc.

Citation pour cette source

Youssef Khmou (2024). PSD (Power Spectral Density), and Amplitude Spectrum with adjusted FFT (https://www.mathworks.com/matlabcentral/fileexchange/40002-psd-power-spectral-density-and-amplitude-spectrum-with-adjusted-fft), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2007a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Fourier Analysis and Filtering dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.3.0.0

errata : figure 2 is changed from semilogy(Frequency, Power) to 10*log10(Frequency, 10*log10(Power)) in Decibel .

1.0.0.0