Intrinsic dimensionality estimation techniques
Data analysis is a fundamental step to face real Machine-Learning problems, various well-known ML techniques, such as those related to clustering or dimensionality reduction, require the intrinsic dimensionality (id) of the dataset as a parameter.
To the aim of automate the estimation of the id, in literature various techniques has been described, this small toolbox contains the implementation of some state-of-art of them, that is: MLE, MiND_ML, MiND_KL, DANCo, DANCoFit.
For an R implementation see:
http://www.maths.lth.se/matematiklth/personal/johnsson/dimest/
Citation pour cette source
Gabriele Lombardi (2024). Intrinsic dimensionality estimation techniques (https://www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Tags
Remerciements
A inspiré : Rand Sphere.zip
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
idEstimation/
idEstimation/private/
idEstimation/html/
Version | Publié le | Notes de version | |
---|---|---|---|
1.1.0.0 | Added a reference to an R implementation in the description. |
||
1.0.0.0 |