Intrinsic dimensionality estimation techniques

Implementation of some state-of-art intrinsic dimensionality estimators.
1,2K téléchargements
Mise à jour 24 mai 2013

Afficher la licence

Data analysis is a fundamental step to face real Machine-Learning problems, various well-known ML techniques, such as those related to clustering or dimensionality reduction, require the intrinsic dimensionality (id) of the dataset as a parameter.

To the aim of automate the estimation of the id, in literature various techniques has been described, this small toolbox contains the implementation of some state-of-art of them, that is: MLE, MiND_ML, MiND_KL, DANCo, DANCoFit.

For an R implementation see:
http://www.maths.lth.se/matematiklth/personal/johnsson/dimest/

Citation pour cette source

Gabriele Lombardi (2024). Intrinsic dimensionality estimation techniques (https://www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2011b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et MATLAB Answers
Remerciements

A inspiré : Rand Sphere.zip

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.1.0.0

Added a reference to an R implementation in the description.

1.0.0.0