CLLL lattice reduction algorithm

Version 1.0.0.0 (2,16 ko) par Alan ZHOU
Complex LLL (CLLL) lattice reduction algorithm for complexed-valued lattices
1K téléchargements
Mise à jour 21 jan. 2014

Afficher la licence

This is the MATLAB code for the complex LLL (CLLL) algorithm:

Ying Hung Gan, Cong Ling, and Wai Ho Mow, “Complex lattice reduction algorithm for low-complexity full-diversity MIMO detection,” IEEE Trans. Signal Processing, vol. 57, pp. 2701-2710, July 2009. (http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4787140)

Function description:
B_reduced = CLLL(B)
Input:
B - Basis matrix with columns being basis vectors
Output:
B_reduced - Reduced basis matrix with columns being basis vectors

Brief introduction of CLLL:
The traditional Lenstra-Lenstra-Lovasz (LLL) reduction algorithm was originally introduced for reducing real lattice bases, while the CLLL algorithm is developed for directly reducing the bases of a complex lattice. When applied in lattice-reduction-aided detectors for multi-input multi-output (MIMO) systems where a complex lattice is naturally defined by a complex-valued channel matrix, the CLLL algorithm can reduce the complexity by nearly 50% compared to the traditional LLL algorithm.

Citation pour cette source

Alan ZHOU (2026). CLLL lattice reduction algorithm (https://fr.mathworks.com/matlabcentral/fileexchange/45149-clll-lattice-reduction-algorithm), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2012b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Stability Analysis dans Help Center et MATLAB Answers
Version Publié le Notes de version
1.0.0.0