eigenfaces algorithm

project faces to eigen faces for face detection
6,9K téléchargements
Mise à jour 17 mars 2014

Afficher la licence

given set of facesthe object is face recognition. we project the faces to new fielad of eigen faces which are actualy eigen vectors the same as PCA algorithm
THANKS TO THE SITE http://fewtutorials.bravesites.com/tutorials
steps
1) resize all M faces to N*N
2) remove average
3) create matrix A of faces each row N*N
totla size of A is (N*N) * M
4) calculate average face
5) remove average face from A
6) compute the covariance matrix C A'*A , C size is M*M
7) compute eigen values and eigen vectors , to compute the eigne faces need to go bacj to higher dimension
8) compute the linear combination of each original face
9( given new face project it to eigen face and compute distance to each eigen face this is the recognition.

Citation pour cette source

michael scheinfeild (2025). eigenfaces algorithm (https://fr.mathworks.com/matlabcentral/fileexchange/45915-eigenfaces-algorithm), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2009a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0.0