bin_classification_​toolbox.zip

A toolbox used to learn linear binary classifiers with different loss functions.
513 téléchargements
Mise à jour 14 mai 2014

Afficher la licence

This toolbox is used to learn linear binary classifiers through regularized risk minimization.
Specifically, it assumes a linear binary classifier y=sign(w'x+b), and the parameters are learned by minimizing the following objective function:
w*,b*=argmin 1/n sum l(y_i,w'x_i+b) + lambda/2*w'w
We use conjugate gradient descent method to solve the optimization problem.
Features:
1. The classifier can be learned using different loss functions such as square loss and logistic loss or any user defined loss.
2. The regularization parameter can be tuned through repeated k-fold cross validation or a separate validation set.
3. Regularization parameter can be tuned based on different criteria such as overall accuracy, average accuracy, average precision and area under roc curve
Note that if you want to use average precision and area under roc curve, make sure vlFeat toolbox (http://www.vlfeat.org/) is downloaded and included in the path

Citation pour cette source

Zach Ziheng Wang (2025). bin_classification_toolbox.zip (https://fr.mathworks.com/matlabcentral/fileexchange/46614-bin_classification_toolbox-zip), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2012a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et MATLAB Answers
Remerciements

A inspiré : Truss displacement based on FEM

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.1.0.0

demo figure changed

1.0.0.0