Chaos theory and meta-heuristics
You can simply use any of these chaotic maps when you need a random number in [0 1] in your meta-heuristic. The maps are:
Chebyshev map
Circle map
Gauss/mouse map
Iterative map
Logistic map
Piecewise map
Sine map
Singer map
Sinusoidal map
Tent map
Details can be found in the following reference:
S. Saremi, S. Mirjalili, A. Lewis, Biogeography-based optimisation with chaos, Neural Computing and Applications, In press, 2014, Springer,
You can download the paper here: http://dx.doi.org/10.1007/s00521-014-1597-x
*********************************************************************************************************************************************
A course on “Optimization Problems and Algorithms: how to understand, formulation, and solve optimization problems”:
https://www.udemy.com/optimisation/?couponCode=MATHWORKSREF
A course on “Introduction to Genetic Algorithms: Theory and Applications”
https://www.udemy.com/geneticalgorithm/?couponCode=MATHWORKSREF
*********************************************************************************************************************************************
Citation pour cette source
Seyedali Mirjalili (2026). Chaos theory and meta-heuristics (https://fr.mathworks.com/matlabcentral/fileexchange/47215-chaos-theory-and-meta-heuristics), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Remerciements
A inspiré : Ulmann-Victor_Attractor, A-Novel-Bio-Inspired-Python-Snake-Optimization-Algorithm
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.1.0.0 | Typo fixed
|
||
| 1.0.0.0 |
