Chaos theory and meta-heuristics
You can simply use any of these chaotic maps when you need a random number in [0 1] in your meta-heuristic. The maps are:
Chebyshev map
Circle map
Gauss/mouse map
Iterative map
Logistic map
Piecewise map
Sine map
Singer map
Sinusoidal map
Tent map
Details can be found in the following reference:
S. Saremi, S. Mirjalili, A. Lewis, Biogeography-based optimisation with chaos, Neural Computing and Applications, In press, 2014, Springer,
You can download the paper here: http://dx.doi.org/10.1007/s00521-014-1597-x
*********************************************************************************************************************************************
A course on “Optimization Problems and Algorithms: how to understand, formulation, and solve optimization problems”:
https://www.udemy.com/optimisation/?couponCode=MATHWORKSREF
A course on “Introduction to Genetic Algorithms: Theory and Applications”
https://www.udemy.com/geneticalgorithm/?couponCode=MATHWORKSREF
*********************************************************************************************************************************************
Citation pour cette source
Seyedali Mirjalili (2024). Chaos theory and meta-heuristics (https://www.mathworks.com/matlabcentral/fileexchange/47215-chaos-theory-and-meta-heuristics), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Remerciements
A inspiré : Ulmann-Victor_Attractor, A-Novel-Bio-Inspired-Python-Snake-Optimization-Algorithm
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Version | Publié le | Notes de version | |
---|---|---|---|
1.1.0.0 | Typo fixed
|
||
1.0.0.0 |