Newton's Method
This function can be used to perform Newton-Raphson method to detect the root of a polynomial. It starts from an initial guess by user and iterates until satisfy the required convergence criterion.
It should be noted that the “root” function in the MATLAB library can find all the roots of a polynomial with arbitrary order. But this method, gives the one the roots based on the initial guess and it gives the number of iteration required to converge.
% Example:
% f(x)=(x^3)-6(X^2)-72(x)-27=0
% therefore
% vector=[1 -6 -72 -27]
% initial=300;
% tolerance=10^-2;
% maxiteration=10^4;
% [root,number_of_iteration] = newton(vector,initial,tolerance,maxiteration)
% or
% [root,number_of_iteration] = newton([1 -6 -72 -27],300,10^-2,10^4)
% root=
% 12.1229
% number_of_iteration=
% 13
% This means that the detected root based on the initial
% guess (300) is 12.1229 and it converges after 13 iterations.
Citation pour cette source
Farhad Sedaghati (2026). Newton's Method (https://fr.mathworks.com/matlabcentral/fileexchange/52362-newton-s-method), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- MATLAB > Mathematics > Elementary Math > Polynomials >
Tags
Remerciements
A inspiré : newtonraphson
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Newton's Method to find the roots of a polynomail/
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.0.0.0 |
Updated description
|
