rootSolve(func, xLow, xUpp, tol)

This function uses Ridder's Method to do non-linear root finding
253 téléchargements
Mise à jour 24 avr. 2017

Afficher la licence

This function uses Ridder's Method to do non-linear root finding. This method works well for smooth scalar functions, and requires a bounded search space.
% XZERO = ROOTSOLVE(FUNC, XLOW, XUPP, TOL)
%
% FUNCTION: This function uses Ridder's Method to return a root, xZero,
% of func on the interval [xLow,xUpp]
%
% INPUTS:
% func = a function for a SISO function: y = f(x)
% xLow = the lower search bound
% xUpp = the upper search bound
% tol = return xZero if abs(func(xZero)) < tol
%
% OUTPUTS:
% xZero = the root of the function on the domain [xLow, xUpp]
%
% NOTES:
% 1) The function must be smooth
% 2) sign(f(xLow)) ~= sign(f(xUpp))
% 3) This function will return a root if one exists, and the function is
% not crazy. If there are multiple roots, it will return the first one
% that it finds.

Citation pour cette source

Matthew Kelly (2024). rootSolve(func, xLow, xUpp, tol) (https://www.mathworks.com/matlabcentral/fileexchange/54458-rootsolve-func-xlow-xupp-tol), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2012a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Physics dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.21.0.0

updated documentation

1.2.0.0

Added feature: the user can now specify the convergence tolerance.

Fixed a small bug: the tolerance for checking roots on the boundary of the interval was set to 0, rather than the convergence tolerance.

1.1.0.0

Added photo.

1.0.0.0