2D Heat Equation Using Finite Difference Method with Steady-State Solution
This code is designed to solve the heat equation in a 2D plate.
Using fixed boundary conditions "Dirichlet Conditions" and initial temperature in all nodes, It can solve until reach steady state with tolerance value selected in the code.
After solution, graphical simulation appears to show you how the heat diffuses throughout the plate within time interval selected in the code.
you can find in the link below a full report about the code with the results for some cases studied using this code and also how to use it.
https://drive.google.com/file/d/0BwE9qaLqIPqSQ1lDTXF6Ry1WT28/view?usp=sharing
Citation pour cette source
Amr Mousa (2026). 2D Heat Equation Using Finite Difference Method with Steady-State Solution (https://fr.mathworks.com/matlabcentral/fileexchange/55058-2d-heat-equation-using-finite-difference-method-with-steady-state-solution), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- Mathematics and Optimization > Partial Differential Equation Toolbox > Domain-Specific Modeling > Structural Mechanics >
Tags
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.0.0.0 |
Report Link
|