Ahmed-ElTahan/Deterministic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-1st-Method
It's intended to apply the self-tuning regulator for a given system
such as
y z^(-d) Bsys
Gp = ------ = ----------------------
u Asys
the controller is given in the form of
T S
u = ------ uc - ------ y = L1 - L2
R R
the closed loop transfer function
y z^(-d)BsysT z^(-d)BsysT z^(-d)BsysT
------ = ---------------------------------- = ------------------- = -------------------
uc AsysR + z^(-d)BsysS Am A0 alpha
where
-- y : output of the system
-- u : control action (input to the system)
-- uc : required output (closed loop input-reference, command signal)
-- err = error between the required and the output --> = uc - y
-- Asys = 1 + a_1 z^-1 + a_2 z^-1 + ... + a_na z^(-na)
-- Bsys = b_0 + b_1 z^-1 + b_2 z^-1 + ... + b_nb z^(-nb)
-- R = 1 + r_1 z^-1 + r_2 z^-1 + ... + r_nr z^(-nr) --> [1, r_1, r_2, r_3, ..., r_nr]
-- S = s_0 + s_1 z^-1 + s_2 z^-1 + ... + s_ns z^(-ns) --> [s_0, s_1, s _2, s_3, ..., s_ns]
-- T : another choice that to affect the close loop zeros and it's determined based
on several ways. Here use T = A0
-- d : delay in the system. Notice that this form of the Diaphontaing solution
is available for systems with d>=1
-- Am = required polynomial of the model = 1+m_1 z^-1 + m_2 z^-1 + ... + m_nm z^(-m_nm)
-- A0 = observer polynomail for compensation of the order = 1 + o_1 z^-1 + o_2 z^-1 + ... + o_no z^(-no)
-- alpha:required characteristic polynomial = Am A0 = 1 + alpha1 z^-1 + alpha2 z^-1 + ... + alpha_(nalpha z)^(-nalpha)
Steps of solution:
1- initialization of the some parameters (theta0, P, Asys, Bsys, S, R, T, y, u, err, dc_gain).
2- assume at first the controllers are unity. Get u, y of the system
3- RLS and get A, B estimated for the system.
4- Solve the Diophantine equation using A, B and the specified "alpha = AmA0" and get S, R of the controller.
5- choose T = A0
5- find "u" due to this new controller and then "y"
T S
u = ------ uc - ------ y
R R
6- repeat from 3 till the system converges.
Function Inputs and Outputs
Inputs
uc: command signal (column vector)
Asys = [1, a_1, a_2, a_3, ..., a_na] ----> size(1, na)
Bsys = [b_0, b_1, b _2, b_3, ..., a_nb]----> size(1, nb)
d : delay in the system (d>=1)
Ts : sample time (sec.)
Am = [1, m_1, m_2, m_3, ..., m_nm]---> size(1, nm)
A0 = [1, o_1, o_2, o_3, ..., o_no]---> size(1, no)
Outputs
Theta_final : final estimated parameters
Gz_estm : estimated pulse transfer function
Gc1: first controller S/R
Gc2: second controller T/R
Gcl = closed loop transfer function
Note: in order to acheive the dc gain which is the y_ss/uc_ss we may use
here T = T/dc_gain
Citation pour cette source
Ahmed ElTahan (2025). Ahmed-ElTahan/Deterministic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-1st-Method (https://github.com/Ahmed-ElTahan/Deterministic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-1st-Method), GitHub. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Communautés
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Les versions qui utilisent la branche GitHub par défaut ne peuvent pas être téléchargées
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.0.0 |
|