Adaptive Fusion of Kernels for Radial Basis Function Neural Network
In this algorithm the two popular similarity measures, Cosine distance (angle) and Euclidean distance are fused together and the mixing weight is made adaptive using gradient decent algorithm. The submission is the example for pattern recognition problem utilized in the paper [1].
Reference
[1] http://link.springer.com/article/10.1007/s00034-016-0375-7
% @article{khan2016novel,
% title={A Novel Adaptive Kernel for the RBF Neural Networks},
% author={Khan, Shujaat and Naseem, Imran and Togneri, Roberto and Bennamoun, Mohammed},
% journal={Circuits, Systems, and Signal Processing},
% pages={1--15},
% year={2016},
% publisher={Springer US}
% }
Citation pour cette source
Shujaat Khan (2025). Adaptive Fusion of Kernels for Radial Basis Function Neural Network (https://www.mathworks.com/matlabcentral/fileexchange/59001-adaptive-fusion-of-kernels-for-radial-basis-function-neural-network), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- AI and Statistics > Deep Learning Toolbox > Image Data Workflows > Pattern Recognition and Classification >
Tags
Remerciements
A inspiré : Function approximation using "A Novel Adaptive Kernel for the RBF Neural Networks"
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Pattern_Recognition_Using_NAK_RBF/
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.0.0 |