Numerical Probability Density Function from Characteristic Function

Computes a numerical probability density function starting from a Characterstic function.
122 téléchargements
Mise à jour 28 jan. 2017

Afficher la licence

This function computes the numerical probability density function of the convolution of the Fourier Transforms of a standard mean reverting process without long term mean level and a mean reverting process presenting a jump rather than a diffusion. From such a numerical probability density function it is possible to estimate the parameter values running a standard maximum likelihood procedure. This machinery represents a good choice when modelling variables that present peaks in their distribution that fastly come back to their mean level.
The function takes as inputs the sample space, the initial values for the processes X and Y and the values of the parameters for the two considered processes. When one desires to estimate such parameters via maximum likelihood, just run the Matlab function mle, taking as input conv_pdf and the considered sample data.
Example:
x = -1:0.01:3;
init = [0 0];
param = [5 0.2 20 0.5 0.1 0.2]

Citation pour cette source

Giulio Francesca (2025). Numerical Probability Density Function from Characteristic Function (https://fr.mathworks.com/matlabcentral/fileexchange/59896-numerical-probability-density-function-from-characteristic-function), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2015a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0.0

sample image inserted
References
Hambly, Ben, Sam Howison, and Tino Kluge. "Modelling spikes and pricing swing options in electricity markets." Quantitative Finance 9.8 (2009): 937-949.
.