SVM for nonlinear classification
Refer: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods by Nello Cristianini and John Shawe-Taylor]
The training algorithm only depend on the data through dot products in H, i.e. on functions of the form Φ(x_i)·Φ(x_j). Now if there were a “kernel function” K such that
K(x_i,x_j) = Φ(x_i)·Φ(x_j),
we would only need to use K in the training algorithm, and would never need to explicitly even know what Φ is. One example is radial basis functions (RBF) or gaussian kernels where, H is infinite dimensional, so it would not be very easy to work with Φ explicitly.
Training the model requires the choice of:
• the kernel function, that determines the shape of the decision surface
• parameters in the kernel function (eg: for gaussian kernel:variance of the Gaussian, for polynomial kernel: degree of the polynomial)
• the regularization parameter λ.
Citation pour cette source
Bhartendu (2024). SVM for nonlinear classification (https://www.mathworks.com/matlabcentral/fileexchange/63024-svm-for-nonlinear-classification), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- MATLAB > Mathematics > Elementary Math > Polynomials >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.0.0 |