SVM using various Kernels

Version 1.0.0.0 (169 ko) par Bhartendu
Performance of various Kernels for SVM classification
2,2K téléchargements
Mise à jour 20 mai 2017

Afficher la licence

Refer: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods by Nello Cristianini and John Shawe-Taylor]
The training algorithm only depend on the data through dot products in H, i.e. on functions of the form Φ(x_i)·Φ(x_j). Now if there were a “kernel function” K such that
K(x_i,x_j) = Φ(x_i)·Φ(x_j),
we would only need to use K in the training algorithm, and would never need to explicitly even know what Φ is. One example is radial basis functions (RBF) or gaussian kernels where, H is infinite dimensional, so it would not be very easy to work with Φ explicitly.
Training the model requires the choice of:
• the kernel function, that determines the shape of the decision surface
• parameters in the kernel function (eg: for gaussian kernel:variance of the Gaussian, for polynomial kernel: degree of the polynomial)
• the regularization parameter λ.

Citation pour cette source

Bhartendu (2024). SVM using various Kernels (https://www.mathworks.com/matlabcentral/fileexchange/63033-svm-using-various-kernels), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2016a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0.0