Robust Lasso Regression with Student-t Residuals

Version 1.0.0.0 (24,8 ko) par Statovic
Estimate robust lasso regression models with Student-t residuals
200 téléchargements
Mise à jour 21 mai 2017

Afficher la licence

This code implements the estimation of robust regression models using the lasso procedure. Robustness is handled by modelling the residuals as arising from a Student-t distribution with an appropriate degrees-of-freedom. The optimization is performed using the expectation-maximization algorithm.
Primary features of the code:
* Automatically produce a complete lasso regularization path for a given degrees-of-freedom
* Select amount of regularization, and the degrees-of-freedom using cross-validation or information criteria

To cite this toolbox:
Schmidt, D.F. and Makalic, E.
Robust Lasso Regression with Student-t Residuals
Lecture Notes in Artificial Intelligence, to appear, 2017

Citation pour cette source

Statovic (2024). Robust Lasso Regression with Student-t Residuals (https://www.mathworks.com/matlabcentral/fileexchange/63037-robust-lasso-regression-with-student-t-residuals), MATLAB Central File Exchange. Récupéré le .

Compatibilité avec les versions de MATLAB
Créé avec R2016a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0.0