Delta Learning, Widrow Hoff Learning
When comparing with the network output with desired output, if there is error the weight vector w(k) associated with the ith processing unit at the time instant k is corrected (adjusted) as
w(k+1) = w(k) + D[w(k)]
where, D[w(k)] is the change in the weight vector and will be explicitly given for various learning rules.
Delta Learning rule is given by:
w(k+1) = w(k) + eta*[ d(k) - f{ w'(k)*x(k) } ] *f'{ w'(k)*x(k) } *x(k)
Widrow-Hoff Learning rule is given by:
w(k+1) = w(k) + eta*[ d(k) - w'(k)*x(k) ] *x(k)
here: f{ w'(k)*x(k) } = w'(k)*x(k)
Citation pour cette source
Bhartendu (2024). Delta Learning, Widrow Hoff Learning (https://www.mathworks.com/matlabcentral/fileexchange/63050-delta-learning-widrow-hoff-learning), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.0.0 |