AdaBoost, PCA (Capstone Project)
Dataset: UIUC Image Database for Car Detection ( https://cogcomp.cs.illinois.edu/Data/Car/ )
PCA
(a) Finding the best k, where k is the dimension of the optimal subspace to which the data is projected.
(b) Suitable classification algorithm on new data and various performance measure.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| AdaBoost : Implemented in 2-dimensional projection space. (i.e.Number of Pricipal Components = 2) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AdaBoost :
AdaBoost (Adaptive Boosting) generates a sequence of hypothesis and combines them with weights.
::Choosen Weak classifiers::
1. GDA
2. Knn (NumNeighbors = 30)
3. Naive Bayes
4. Linear (Logistic Regression*)
Refer to: https://www.iist.ac.in/sites/default/files/people/in12167/adaboost.pdf
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Contents
Initialization, Dataset : *'CarPixels.csv'* :: Generated from: UIUC Image Database for Car Detection
Sample Images (Random)
Applying PCA
Performance Measure & Optimal number of Principal Components (K)
Explaind-Variance Curve
Performace Measure
Reconstruction of Images
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| Adaboost (GDA, Knn, NB, Logistic) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Applying AdaBoost
Initialization (2-dimension)
Gaussian Discriminant Analysis Classification
Knn Classification
Naive Bayes Classification
Logistic Regression
Conclusions
Related Examples:
1. SVM
https://in.mathworks.com/matlabcentral/fileexchange/63158-support-vector-machine
2. SVM using various kernels
https://in.mathworks.com/matlabcentral/fileexchange/63033-svm-using-various-kernels
3. SVM for nonlinear classification
https://in.mathworks.com/matlabcentral/fileexchange/63024-svm-for-nonlinear-classification
4. SMO
https://in.mathworks.com/matlabcentral/fileexchange/63100-smo--sequential-minimal-optimization-
Citation pour cette source
Bhartendu (2025). AdaBoost, PCA (Capstone Project) (https://www.mathworks.com/matlabcentral/fileexchange/63161-adaboost-pca-capstone-project), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.0.0 |