System Identification Using Least Mean Forth (LMF) and Least Mean Square (LMS) algorithm

System Identification Using Least Mean Forth (LMF) and Least Mean Square (LMS) algorithm
510 téléchargements
Mise à jour 22 fév. 2018

Afficher la licence

In this simulation least mean square (LMS) and least mean forth (LMF) algorithms are compared in non-Gaussian noisy environment for system identification task. Is it well known that the LMF algorithm outperforms the LMS algorithm in non-Gaussian environment, the same results can be seen in this implementation. Additionally a customized function for additive white uniform noise is also programmed.

Citation pour cette source

Shujaat Khan (2024). System Identification Using Least Mean Forth (LMF) and Least Mean Square (LMS) algorithm (https://www.mathworks.com/matlabcentral/fileexchange/63596-system-identification-using-least-mean-forth-lmf-and-least-mean-square-lms-algorithm), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2011a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Stair Plots dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Plant_Identification_LMS_LMF/

Plant_Identification_LMS_LMF/html/

Version Publié le Notes de version
1.2.0.0

- Example

1.1.0.0

- Monte Carlo simulation setup

1.0.0.0

- Signal generator is generalized
- results on arbitrary system are shown