System Identification Using Least Mean Forth (LMF) and Least Mean Square (LMS) algorithm
In this simulation least mean square (LMS) and least mean forth (LMF) algorithms are compared in non-Gaussian noisy environment for system identification task. Is it well known that the LMF algorithm outperforms the LMS algorithm in non-Gaussian environment, the same results can be seen in this implementation. Additionally a customized function for additive white uniform noise is also programmed.
Citation pour cette source
Shujaat Khan (2024). System Identification Using Least Mean Forth (LMF) and Least Mean Square (LMS) algorithm (https://www.mathworks.com/matlabcentral/fileexchange/63596-system-identification-using-least-mean-forth-lmf-and-least-mean-square-lms-algorithm), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Remerciements
Inspiré par : Add white Uniform noise to a signal, System Identification Using Recursive Least Square (RLS) and Least Mean Square (LMS) algorithm
A inspiré : Variable Step-Size Least Mean Square (VSS-LMS) Algorithm
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Plant_Identification_LMS_LMF/
Plant_Identification_LMS_LMF/html/
Version | Publié le | Notes de version | |
---|---|---|---|
1.2.0.0 | - Example |
||
1.1.0.0 | - Monte Carlo simulation setup |
||
1.0.0.0 | - Signal generator is generalized
|