Absolute orientation with the QUEST algorithm

Efficient Absolute Orientation Solver
749 téléchargements
Mise à jour 29 sept. 2018

Afficher la licence

The function computes the orientation and translation for the transformation between
two corresponding 3D point sets pi and qi so that they are related by qi = R*pi + t.
It is based on Shuster's QUEST algorithm, a popular technique in astronautics for
estimating attitude, described in M.D. Shuster and S.D. Oh: "Three-Axis Attitude Determination from
Vector Observations", Journal of Guidance and Control, Vol. 4, No. 1, January–February 1981, pp. 70–77.
See http://www.malcolmdshuster.com/Pub_1981a_J_TRIAD-QUEST_scan.pdf
See also M. Lourakis and G. Terzakis: "Efficient Absolute Orientation Revisited", in Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

Additionally, I have a code for absolute orientation based on the FOAM algorithm:
https://www.mathworks.com/matlabcentral/fileexchange/63926

Citation pour cette source

Manolis Lourakis (2025). Absolute orientation with the QUEST algorithm (https://fr.mathworks.com/matlabcentral/fileexchange/65173-absolute-orientation-with-the-quest-algorithm), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2010a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur ROS Toolbox dans Help Center et MATLAB Answers
Remerciements

Inspiré par : Absolute orientation with the FOAM algorithm

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.3.0.1

Updated description

1.3.0.0

Fixed bug with the computation of the mean residual error.
Added quaternion to rotation matrix conversion without normalization.
Added test for singular rotation (i.e. +/-pi rotation around an arbitrary axis).

1.2.0.0

Compute the max eigenvalue from the QUEST characteristic polynomial
instead of the FOAM one previously used. Note that the two are equivalent
for infinitely precise arithmetic

1.1.1.0

Description changes

1.1.0.0

Minor updates in the description

1.0.0.0