Expectation Maximization Algorithm

Expectation Maximization Algorithm
2,9K téléchargements
Mise à jour 19 jan. 2018

Afficher la licence

This submission implements the Expectation Maximization algorithm and tests it on a simple 2D dataset.
The Expectation–Maximization (EM) algorithm is an iterative method to find maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

Github Repository:
https://github.com/rezaahmadzadeh/Expectation-Maximization

Citation pour cette source

Reza Ahmadzadeh (2025). Expectation Maximization Algorithm (https://fr.mathworks.com/matlabcentral/fileexchange/65772-expectation-maximization-algorithm), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2016a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.2.0.0

added url for github repository

1.1.0.0

Added picture

1.0.0.0