System Identification Using LMS Algorithm and Huber Cost Function Minimization

Modelling a FIR Filter using LMS Algorithm and, Huber's Cost Function for presence of outliers
116 téléchargements
Mise à jour 15 fév. 2018

Afficher la licence

Modelling a FIR Filter using LMS Algorithm and, Huber's Cost Function Minimization for presence of a certain percentage of outliers.
Here we have to identify and model a 3-tap FIR filter with weights [0.26 0.93 0.26].
This has to be done using:
1) Mean Square error minimization (LMS Algorithm)-
The reference signal is corrupted by additive white gaussian noise (mean=0, standard deviation=0.1)
2) Huber Loss Minimization (with 10 to 20 percent outlier added to the noise)
The reference signal is corrupted by additive white gaussian noise (mean=0, standard deviation=0.05)

Citation pour cette source

Sambit Behura (2026). System Identification Using LMS Algorithm and Huber Cost Function Minimization (https://fr.mathworks.com/matlabcentral/fileexchange/65901-system-identification-using-lms-algorithm-and-huber-cost-function-minimization), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2017a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Version Publié le Notes de version
1.0.0.0

Problem Statement Updated

Problem Statement Updated