Mackey Glass Time Series Prediction using Radial Basis Function (RBF) Neural Network
In this submission I implemented an radial basis function (RBF) neural network for the prediction of chaotic time-series prediction. In particular a Mackey Glass time series prediction model is designed, the model can predict few steps forward values using the past time samples. The RBF is trained using conventional gradient descent learning algorithm and the kernel function is the Gaussian kernel with centers and spreads obtained from K-mean clustering algorithm.
Citation pour cette source
Shujaat Khan (2024). Mackey Glass Time Series Prediction using Radial Basis Function (RBF) Neural Network (https://www.mathworks.com/matlabcentral/fileexchange/66216-mackey-glass-time-series-prediction-using-radial-basis-function-rbf-neural-network), MATLAB Central File Exchange. Récupéré le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Remerciements
Inspiré par : Mackey-Glass time series generator, Mackey Glass Time Series Prediction Using Least Mean Square, Mackey Glass Time Series Prediction Using Fractional Least Mean Square (FLMS), Function approximation using "A Novel Adaptive Kernel for the RBF Neural Networks"
A inspiré : Nonlinear System Identification using RBF Neural Network
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Time_Series_Prediction/html/
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.0.0 |