A sampling-based algorithm for the Voigt/complex error function

A function file to compute the complex error function with high-accuracy.
51 téléchargements
Mise à jour 4 avr. 2018

Afficher la licence

This function file computes the complex error function (also known as the Faddeeva function) by using a new method of sampling based on incomplete cosine expansion of the sinc function [1, 2]. External domain is computed by the Laplace continued fraction [3]. The description of the algorithm is presented in the work [4].
---------------------
REFERENCES
[1] S. M. Abrarov and B. M. Quine, Appl. Math. Comput., 258 (2015) 425-435.
https://doi.org/10.1016/j.amc.2015.01.072
[2] S. M. Abrarov and B. M. Quine, J. Math. Research, 7 (2) (2015) 163-174.
https://doi.org/10.5539/jmr.v7n2p163
[3] W. Gautschi, SIAM J. Numer. Anal., 7 (1) (1970) 187-198.
https://doi.org/10.1137/0707012
[4] S. M. Abrarov, B. M. Quine and R. K. Jagpal, Appl. Numer. Math., 129 (2018) 181-191.
https://doi.org/10.1016/j.apnum.2018.03.009

Citation pour cette source

Sanjar Abrarov (2026). A sampling-based algorithm for the Voigt/complex error function (https://fr.mathworks.com/matlabcentral/fileexchange/66752-a-sampling-based-algorithm-for-the-voigt-complex-error-function), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2009b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et MATLAB Answers
Version Publié le Notes de version
1.0.0.0

Minor correction in title.
Figure is added.