The Genetic Algorithm (GA) : Selection + Crossover + Mutation + Elitism

This is the implementation of the original version of the genetic algorithm
8,1K téléchargements
Mise à jour 11 juin 2018

Afficher la licence

This submission includes the main components of the Genetic Algorithm (GA) including Selection + Crossover + Mutation + Elitism. There are functions for each and the GA has been developed as a function as well. Of course, it is the discrete (binary) version of the GA algorithm since all the genes can be assigned with either 0 or 1.
More information can be found in www.alimirjalili.com
I have a number of relevant courses in this area. You can enrol via the following links with 95% discount:
*******************************************************************************************************************************************
A course on “Optimization Problems and Algorithms: how to understand, formulation, and solve optimization problems”:
https://www.udemy.com/optimisation/?couponCode=MATHWORKSREF

A course on “Introduction to Genetic Algorithms: Theory and Applications”
https://www.udemy.com/geneticalgorithm/?couponCode=MATHWORKSREF
*******************************************************************************************************************************************

Citation pour cette source

Seyedali Mirjalili (2024). The Genetic Algorithm (GA) : Selection + Crossover + Mutation + Elitism (https://www.mathworks.com/matlabcentral/fileexchange/67435-the-genetic-algorithm-ga-selection-crossover-mutation-elitism), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2016b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Genetic Algorithm dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0.0

An update to the selection operator (Roulette wheel) to handle negative fitness values too.