Essential Matrix Estimation
This code uses a five point algorithm in a RANSAC framework to compute a robust initial estimate of the essential matrix.
That estimate is subsequently refined by parameterizing the essential matrix with six parameters (3 for the Rodrigues vector and 3 for the translation vector) and minimizing the cumulative symmetric distance from epipolar lines for RANSAC inliers with the Levenberg–Marquardt algorithm.
NOTE: The code requires several functions by others, see README.txt for further instructions.
See also https://en.wikipedia.org/wiki/Essential_matrix
Citation pour cette source
Manolis Lourakis (2025). Essential Matrix Estimation (https://fr.mathworks.com/matlabcentral/fileexchange/67580-essential-matrix-estimation), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
- Image Processing and Computer Vision > Computer Vision Toolbox > Recognition, Object Detection, and Semantic Segmentation > Image Category Classification >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
E_estim
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.1 | Minor changes to ransacfitessmatrix.m Included 3rd party scripts |
||
| 1.0.0.0 | Updated description
|
