Finding a single informative bit in a sea of noise
Generate random matrices of a user-specified size, and in a single location set a pixel to true in half of them, and false in the other half. Quickly train a convolutional neural network to classify the matrices ('class' 1 vs 'class 2'). Then use a deep dream image to find the location of the single informative bit.
This is a very simple but powerful example. "Traditional" machine learning algorithms fail (a long, slow failure). The CNN converges quickly! The binary matrices can be rectangular, or they can be vectors. The data could represent almost anything...a single nucleotide variant in aligned genomes, a fraudulent transaction in a ledger, ....
Citation pour cette source
Brett Shoelson (2024). Finding a single informative bit in a sea of noise (https://www.mathworks.com/matlabcentral/fileexchange/67667-finding-a-single-informative-bit-in-a-sea-of-noise), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
findingANonRandomBit
findingANonRandomBit/Dependencies
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.0.1 | Adding a screenshot. |
||
1.0.0.0 |