EMG functions and classification methods for prosthesis control - Joseph Betthauser

EMG DSP functions, classifiers, and miscellaneous
968 téléchargements
Mise à jour 24 juin 2018

Afficher la licence

I am re-upping my functions folder for the newcomers to EMG signal processing, prosthesis control, and classification. Some are designed to make commonly-used EMG DSP and classification procedures easy to perform, and some are based on my research. Most, if not all, have been optimized for speed and efficient data management. Description on how to use folder for classification in MATLAB is detailed with useable "cut and paste" code in the word file.
There are other useful tools contained in the folders such as k-means dictionary reduction, k-gmm clustering, optimal channel/feature subset selection, offline and online versions of useful classifiers, useful distance/similarity metrics, and cubic interpolation for "up-sampling" or down-sampling.

Citation pour cette source

Joseph Betthauser (2026). EMG functions and classification methods for prosthesis control - Joseph Betthauser (https://fr.mathworks.com/matlabcentral/fileexchange/67821-emg-functions-and-classification-methods-for-prosthesis-control-joseph-betthauser), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2017b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

emg_functions/classify_offline/

emg_functions/classify_offline/EASRC utilities/

emg_functions/classify_online/

emg_functions/dictionary_compression/

emg_functions/distance_measures/

emg_functions/emg_dsp_functions/

emg_functions/feature_selection/

emg_functions/image_processing/

emg_functions/performance_metrics/

Version Publié le Notes de version
1.0

removed some optimal features selectors because they were incomplete versions of the final design: JLB_featureSelect4()