Nonlinear System Identification using Spatio-Temporal RBF-NN
Herein, you will find three variants of radial basis function neural network (RBF-NN) for nonlinear system identification task. In particular, I implemented RBF with conventional and fractional gradient descent, and compared the performance with spatio-temporal RBF-NN.
* For citations see [cite as] section
Citation pour cette source
Shujaat Khan (2024). Nonlinear System Identification using Spatio-Temporal RBF-NN (https://www.mathworks.com/matlabcentral/fileexchange/68415-nonlinear-system-identification-using-spatio-temporal-rbf-nn), MATLAB Central File Exchange. Récupéré le .
Khan, Shujaat, et al. “A Novel Adaptive Kernel for the RBF Neural Networks.” Circuits, Systems, and Signal Processing, vol. 36, no. 4, Springer Nature, July 2016, pp. 1639–53, doi:10.1007/s00034-016-0375-7.
Khan, Shujaat, et al. “A Fractional Gradient Descent-Based RBF Neural Network.” Circuits, Systems, and Signal Processing, vol. 37, no. 12, Springer Nature America, Inc, May 2018, pp. 5311–32, doi:10.1007/s00034-018-0835-3.
Khan, Shujaat, et al. “Spatio-Temporal RBF Neural Networks.” 2018 3rd {IEEE} International Conference on Emerging Trends in Engineering, Sciences and Technology ({ICEEST}), {IEEE}, 2018
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Remerciements
Inspiré par : Nonlinear System Identification using RBF Neural Network
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Nonlinear_System_Identification
Version | Publié le | Notes de version | |
---|---|---|---|
1.1.2 | - update citation information |
||
1.1.1 | - title change |
||
1.1 | - Comparison with conventional and fractional variant |
||
1.0.2 | - Simplification of code syntax |
||
1.0.1 | - Example added |
||
1.0.0 |