GPU Coder Interface for Deep Learning
Use GPU Coder to generate optimized CUDA code for deep learning networks
3,3K téléchargements
Mise à jour
15 oct. 2025
GPU Coder generates optimized CUDA code from MATLAB code and Simulink models for deep learning, embedded vision, and autonomous systems. You can deploy a variety of pretrained deep learning networks such as YOLOv2, ResNet-50, SegNet, MobileNet, and others from Deep Learning Toolbox to NVIDIA GPUs. You can generate optimized code for pre-processing and post-processing along with your trained deep learning networks to deploy complete applications.
When used with GPU Coder, GPU Coder Interface for Deep Learning provides the ability for the generated code to call into cuDNN or TensorRT optimization libraries for NVIDIA GPUs.
When used in MATLAB with Deep Learning Toolbox and without GPU Coder, you can accelerate the execution of deep learning networks on NVIDIA GPUs.
This support package is functional for R2018b and beyond.
If you have download or installation problems, please contact Technical Support - https://www.mathworks.com/support/contact_us.html
Compatibilité avec les versions de MATLAB
Créé avec
R2018b
Compatible avec les versions R2018b à R2026a
Plateformes compatibles
Windows macOS (Apple Silicon) macOS (Intel) LinuxCatégories
- AI and Statistics > Deep Learning Toolbox >
- Code Generation > GPU Coder >
- MATLAB > External Language Interfaces > C++ with MATLAB > Call C++ from MATLAB >
En savoir plus sur Deep Learning Toolbox dans Help Center et MATLAB Answers
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
