Parallel Computing TEDA Clustering Algorithm
The package contains:
1. ParallelTEDAClustering.m - The source code of the parallel computing TEDA clustering algorithm;
2. demo.m - The demo
Reference:
Gu X., Angelov P.P., Gutierrez G., Iglesias J.A., Sanchis A. (2017) Parallel Computing TEDA for High Frequency Streaming Data Clustering. In: Angelov P., Manolopoulos Y., Iliadis L., Roy A., Vellasco M. (eds) Advances in Big Data. INNS 2016. Advances in Intelligent Systems and Computing, vol 529. Springer, Cham
Please cite this algorithm using the above reference if this code helps.
For any queries about the codes, please contact Prof. Plamen P. Angelov (p.angelov@lancaster.ac.uk) and Dr. Xiaowei Gu (x.gu3@lancaster.ac.uk)
Programmed by Xiaowei Gu
Citation pour cette source
Gu X., Angelov P.P., Gutierrez G., Iglesias J.A., Sanchis A. (2017) Parallel Computing TEDA for High Frequency Streaming Data Clustering. In: Angelov P., Manolopoulos Y., Iliadis L., Roy A., Vellasco M. (eds) Advances in Big Data. INNS 2016. Advances in Intelligent Systems and Computing, vol 529. Springer, Cham
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.0.1 | Updated the reference |
||
| 1.0.0 |
