Data Science: Predict Damage Costs of Weather Events

Explore data and use machine learning to predict the damage costs of storm events based on location, time of year, and type of event
2,9K téléchargements
Mise à jour 21 mai 2021
The goal of this case study is to explore storm events in various locations in the United States and analyze the frequency and damage costs associated with different types of events. A machine learning model is used to predict the damage costs, based on historical data from 1980 - 2020. The calculations are then performed in an app, which can be shared as a web application.
This example also highlights techniques for cleaning data in various forms (numeric, text, categorical, dates and times) and working with large data sets which do not fit into memory.
The example is used in the "Data Science with MATLAB" webinar series.

Citation pour cette source

Heather Gorr, PhD (2024). Data Science: Predict Damage Costs of Weather Events (https://github.com/mathworks/data-science-predict-weather-events), GitHub. Récupéré le .

Compatibilité avec les versions de MATLAB
Créé avec R2019a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Weather and Atmospheric Science dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Les versions qui utilisent la branche GitHub par défaut ne peuvent pas être téléchargées

Version Publié le Notes de version
1.0.4

Included examples for Intro to MATLAB webinar

1.0.3

Link to GitHub

1.0.2

Included recent data, updated scripts to include Live Editor Tasks for data cleaning (available in R2019b)

1.0.1

Updated for Data Science w/ MATLAB webinar

1.0.0

Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.
Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.