Sample Entropy

A bearable and vectorized implementation of Sample Entropy (SampEn).
3K téléchargements
Mise à jour 9 nov. 2018

Afficher la licence

This function computes the Sample Entropy (SampEn) algorithm according to the Richman, J. S., & Moorman, J. R. (2000) recommendations. The script is bearable, compressed and vectorized. Therefore, the computation cost is minimal.

Furthermore, extraordinary cases when SampEn is not defined are considered:
- If B = 0, no regularity has been detected. A common SampEn implementation would return -Inf value.
- If A = 0, the conditional probability is zero (A/B = 0), returning an Inf value.

According to Richman & Moorman, the upper bound of SampEn must be A/B = 2/[(N-m-1)(N-m)], returning SampEn = log(N-m)+log(N-m-1)-log(2). Hence, whenever A or B are equal to 0, that is the correct value.

Input parameters:
- signal: Signal vector with dims. [1xN]
- m: Embedding dimension (m < N).
- r: Tolerance (percentage applied to the SD).
- dist_type: (Optional) Distance type, specified by a string. Default value: 'chebychev' (type help pdist for further information).

Output variables:
- value: SampEn value.

Example of use:
signal = rand(200,1);
value = sampen(signal,1,0.2)

Citation pour cette source

Víctor Martínez-Cagigal (2018). Sample Entropy. Mathworks.

Compatibilité avec les versions de MATLAB
Créé avec R2018b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.1.0