Chaotic Time Series Prediction using Spatio-Temporal RBF-NN
Herein, you will find two variants of radial basis function neural network (RBF-NN) for chaotic time series prediction task. In particular, I implemented RBF with conventional and compared the performance with spatio-temporal RBF-NN for Mackey-Glass time series prediction.
* For citations see [cite as] section
Citation pour cette source
Shujaat Khan (2024). Chaotic Time Series Prediction using Spatio-Temporal RBF-NN (https://www.mathworks.com/matlabcentral/fileexchange/69523-chaotic-time-series-prediction-using-spatio-temporal-rbf-nn), MATLAB Central File Exchange. Extrait(e) le .
Khan, Shujaat, et al. “A Fractional Gradient Descent-Based RBF Neural Network.” Circuits, Systems, and Signal Processing, vol. 37, no. 12, Springer Nature America, Inc, May 2018, pp. 5311–32, doi:10.1007/s00034-018-0835-3.
Khan, Shujaat, et al. “A Novel Adaptive Kernel for the RBF Neural Networks.” Circuits, Systems, and Signal Processing, vol. 36, no. 4, Springer Nature, July 2016, pp. 1639–53, doi:10.1007/s00034-016-0375-7.
Sadiq, Alishba, et al. “Chaotic Time Series Prediction using Spatio-Temporal RBF Neural Networks.” 2018 3rd {IEEE} International Conference on Emerging Trends in Engineering, Sciences and Technology ({ICEEST}), {IEEE}, 2018
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Remerciements
Inspiré par : Mackey-Glass time series generator
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Time_Series_Prediction
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.1 | -update citation information |
||
1.0.0 |