Matrix-Regularized Multiple Kernel Learning via (r,p) Norms.

Version 1.0.1 (1,48 Mo) par Yina Han
This code implements a matrix-regularized multiple kernel learning (MKL) technique based on a notion of (r, p) norms.
232 téléchargements
Mise à jour 22 déc. 2018

This code implements a matrix-regularized multiple kernel learning (MKL) technique based on a notion of (r, p) norms. This extends vector ℓ p-norm regularization and helps explore the dependences and interactions among kernels leading to better performance. We gave a simple alternating optimization with closed-form solution for the kernel weights and shown the global convergence of the proposed problem that can always be guaranteed. We analyzed such a regularizer using a Rademacher complexity bound, and we also proved that (r, p)-norm MKL yields strictly better generalization bounds than ℓ p-norm MKL. Finally, we reported the results of (r, p)-MKL on several publicly available data sets. (r, p)-MKL was shown to achieve consistently superior performances to canonical ℓ p-MKL, demonstrating the benefits of revealing the higher order kernel-pair relationships. Nevertheless, this project constitutes only a preliminary study and that a deeper analysis with more expressive formulation and efficient solving strategy should be further investigated.

Please cite the following papers if you find this work is useful:

Yina Han, Yixin Yang, Xuelong Li, Qingyu Liu, Yuanliang Ma, Matrix-Regularized Multiple Kernel Learning via (r,p) Norms[J]. IEEE Transactions on Neural Networks and Learning Systems. Volume: 29, Issue: 10, pp.4997 - 5007. 2018.

See MatrixMKL_main.m for more details.

Citation pour cette source

Yina Han (2025). Matrix-Regularized Multiple Kernel Learning via (r,p) Norms. (https://github.com/yinahan/Matrix-MKL), GitHub. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2012a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Linear Algebra dans Help Center et MATLAB Answers
Tags Ajouter des tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Les versions qui utilisent la branche GitHub par défaut ne peuvent pas être téléchargées

Version Publié le Notes de version
1.0.1

Matrix-Regularized Multiple Kernel Learning via (r,p) Norms.

1.0.0

Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.
Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.