Time Varying Multivariate Autoregressive Modeling
This toolbox contains Matlab codes for time-varying multivariate autoregressive (TV-MVAR) modeling. MVAR models are usually applied to investigate couplings between various time-series in frequency domain. Herein, changes in the model parameters are tracked using the conventional Kalman Filer (KF) and a proposed modified KF. Model order selection and hyperparameter optimization is realized using Genetic Algorithms, significantly improving accuracy and run-time. Residual heteroskedasticity is tackled by using Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models leading to more accurate representations of the strength and directionality of the underlying couplings.
The code can be also found at: https://github.com/BioSigSystLab/TV-MVAR
Citation pour cette source
Kostoglou, Kyriaki, et al. Time Varying Multivariate Autoregressive Modeling. Code Ocean, 2019, doi:10.24433/co.4367712.v1.
Kyriaki Kostoglou, Andrew Robertson, Bradley MacIntosh, Georgios Mitsis, "A novel framework for estimating time-varying multivariate autoregressive models and application to cardiovascular responses to acute exercise", IEEE Transactions on Biomedical Engineering, 2019.
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxCatégories
Tags
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
