Harris hawks optimization (HHO): Algorithm and applications
Version 1.0.3 (3,14 Mo) par
Ali Asghar Heidari
Harris Hawks Optimizer (HHO) is a novel meta-heuristic optimization paradigm for global optimization
In this paper, a novel population-based, nature-inspired optimization paradigm is proposed, which is called Harris Hawks Optimizer (HHO). The main inspiration of HHO is the cooperative behavior and chasing style of Harris’ hawks in nature called surprise pounce. In this intelligent strategy, several hawks cooperatively pounce prey from different directions in an attempt to surprise it. Harris hawks can reveal a variety of chasing patterns based on the dynamic nature of scenarios and escaping patterns of the prey. This work mathematically mimics such dynamic patterns and behaviors to develop an optimization algorithm. The effectiveness of the proposed HHO optimizer is checked, through a comparison with other nature-inspired techniques, on 29 benchmark problems and several real-world engineering problems. The statistical results and comparisons show that the HHO algorithm provides very promising and occasionally competitive results compared to well-established metaheuristic techniques.
Main paper:
Harris hawks optimization: Algorithm and applications Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, Huiling Chen, Future Generation Computer Systems, 2019, DOI: https://doi.org/10.1016/j.future.2019.02.028
Download the paper from:
https://www.researchgate.net/publication/331416553_Harris_hawks_optimization_Algorithm_and_applications
https://www.sciencedirect.com/science/article/pii/S0167739X18313530
More information ,source code, and related supplementary materials such as Latex files and visio files for figures of the original paper can be found in:
(a) https://www.researchgate.net/profile/Ali_Asghar_Heidari
(b) https://aliasgharheidari.com/HHO.html
(c) http://evo-ml.com/2019/03/02/hho/
(d) https://github.com/aliasghar68/Harris-hawks-optimization-Algorithm-and-applications-
(e) https://codeocean.com/capsule/5851871/tree/v1
Author, inventor and programmer: Ali Asghar Heidari
PhD research intern, Department of Computer Science, School of Computing, National University of Singapore, Singapore Exceptionally Talented Ph. DC funded by Iran's National Elites Foundation (INEF), University of Tehran
e-Mail: aliasghar68@gmail.com, as_heidari@ut.ac.ir
(singapore) aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu
Homepage: https://www.researchgate.net/profile/Ali_Asghar_Heidari
Citation pour cette source
Heidari, Ali Asghar, et al. “Harris Hawks Optimization: Algorithm and Applications.” Future Generation Computer Systems, Elsevier BV, Feb. 2019, doi:10.1016/j.future.2019.02.028.
Compatibilité avec les versions de MATLAB
Créé avec
R2013a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS LinuxCatégories
En savoir plus sur Global Optimization Toolbox dans Help Center et MATLAB Answers
Tags
Remerciements
A inspiré : MOSMA: Multi-Objective Slime Mould Algorithm, NCHHO_OptimizationAlgorithm_IoV_Application, Leader Harris hawks optimization (LHHO) MATLAB Code
Communautés
Autres fichiers de la communauté Power Electronics Control
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Artemisinin Optimizer (AO)-2024
Educational Competition Optimizer (ECO)-2024
Fata Morgana Algorithm (FATA)-2024
Harris Hawk Optimization (HHO)-2019
Hunger Games Search (HGS)-2021
Moss Growth Optimization (MGO)-2024
Parrot Optimizer (PO)-2024
Polar Lights Optimizer (PLO)-2024
Rime Optimization Algorithm (RIME)-2023/RIME Iteration version
Rime Optimization Algorithm (RIME)-2023/RIME function evaluation version
Runge Kutta Optimization (RUN)-2021
Slime mould algorithm (SMA)-2020
Weighted Mean of Vectors (INFO)-2022
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.3 | 2024 |
||
1.0.2 | . |
||
1.0.1 | website updated |
||
1.0.0 |