Efficient Primal-Dual Method for the Obstacle Problem

Solve 1D/2D non-linearized and linearized obstacle problems efficiently using primal-dual hybrid gradients with projection or L1 penalty.
81 téléchargements
Mise à jour 19 juin 2019

Afficher la licence

We solve the non-linearized and linearized obstacle problems efficiently using a primal-dual hybrid gradients method involving projection and/or ?1 penalty. Since this method requires no matrix inversions or explicit identification of the contact set, we find that this method, on a variety of test problems, achieves the precision of previous methods with a speed up of 1–2 orders of magnitude. The derivation of this method is disciplined, relying on a saddle point formulation of the convex problem, and can be adapted to a wide range of other constrained convex optimization problems.

The code provided here was used to produce all figures of the following paper:
Zosso, D., Osting, B., Xia, M., and Osher, S., "An Efficient Primal-Dual Method for the Obstacle Problem", J Sci Comput (2017) 73(1):416-437.
https://doi.org/10.1007/s10915-017-0420-0

Citation pour cette source

Dominique Zosso (2025). Efficient Primal-Dual Method for the Obstacle Problem (https://fr.mathworks.com/matlabcentral/fileexchange/71886-efficient-primal-dual-method-for-the-obstacle-problem), MATLAB Central File Exchange. Extrait(e) le .

Zosso, Dominique, et al. “An Efficient Primal-Dual Method for the Obstacle Problem.” Journal of Scientific Computing, vol. 73, no. 1, Springer Nature, Mar. 2017, pp. 416–37, doi:10.1007/s10915-017-0420-0.

Afficher d’autres styles
Compatibilité avec les versions de MATLAB
Créé avec R2019a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Optimization Toolbox dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.1

Added splash image.

1.0.0