Recursive Bayesian Estimator

Recursive Bayesian estimator for any distribution with example
370 téléchargements
Mise à jour 16 sept. 2024

Afficher la licence

This function finds the probability density function, MMSE estimation (expected value) and variance of a random variable from n number of independent observations defined by their probability density functions (pdf). Since pdfs defined by the user, this function can be used with any type of distribution. Example file is attached and explained at the end of the description.
function [p_x_condition, E_x, Var_x]=Recursive_Bayesian(x,p_x)
Input
x: range of x equally spaced vector of size (1*N)
p_x: probability density matrix of size (n*N) where p_x(i,:) is the probability density function of the ith observation
Output
p_x_condition: Conditional probability density function of x of size (1*N)
E_x: expected value of x
Var_x: variance of x
Example: A state (x) is estimated using 4 sensors. the readings from the sensors (3.5, 5, 4 and 3.5), respectively. The noise with the 4 sensors has zero mean with the following characteristics:
-sensor 1: uniform distribution from [-1.5 to 1.5]
-sensor 2: Gaussian distribution with variance=0.25
-sensor 3: Gaussian distribution with variance=1
-sensor 4: uniform distribution from [-2.5 to 2.5]
From the example file (example.m) using the function we get:
MMSE estimation of x=4.56
Variance=0.095
The figure shows the distribution of x and the four sensors.

Citation pour cette source

Ayad Al-Rumaithi (2026). Recursive Bayesian Estimator (https://fr.mathworks.com/matlabcentral/fileexchange/72002-recursive-bayesian-estimator), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2017b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Version Publié le Notes de version
1.0.3

Added website

1.0.2

description

1.0.1

comments in files

1.0.0