Principal Component Analysis / Hebbian-based Max Eigenfilter

Principal Component Analysis and Hebbian-based Maximum Eigenfilter
107 téléchargements
Mise à jour 4 juil. 2019

Afficher la licence

% TASK 1. Let’s generate 800 random data on a 2-dimensional plane. The data
% are generated as 4 clusters, of which centers are located at (2,2), (-1,-2),
% (2,0) and (0,1). Each cluster has 200 data, of which distances from each
% center are randomly distributed with Gaussian distribution (standard
% deviation = 2, 2, 1, and 1, respectively).

% TASK 1-(a) Mark the generated data with dots (or circles) on a
% 2-dimensional space.
% TASK 1-(b) Conduct Principal Component Analysis based on eigenvector
% analysis. (You may use any library function for the
% eigenvector/eigenvalue calculation.) Show the principal axes and data
% projects on the axes.
% TASK 1-(c) Program and calculate the Hebbian-based maximum eigenfilter,
% and compare with the principal in (b).

Citation pour cette source

Shujaat Khan (2024). Principal Component Analysis / Hebbian-based Max Eigenfilter (https://www.mathworks.com/matlabcentral/fileexchange/72052-principal-component-analysis-hebbian-based-max-eigenfilter), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2019a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Principal Component Analysis and Hebbian-based Maximum Eigenfilter

Version Publié le Notes de version
1.0.0