System Identification using ANN
Version 1.0.6 (2,23 ko) par
Ayad Al-Rumaithi
System identification using artificial neural network example
This example file shows system identification using artificial neural network (ANN) of 2DOF system subjected to Gaussian white noise. The neural network consist of the following layers:
-Input layer: 2 nodes for the force at the current step and 2 nodes for the displacement at the previous step using open-loop feedback
-Hidden layer: 2 nodes for two inner states because there are 2 modes for 2DOF system
-Output layer: 2 nodes for the displacement
After training and getting the predicted output, the network was converted to closed-loop network and trained again (closed-loop networks uses predicted feedback from previous step instead of actual feedback). The predicted output from open-loop and closed-loop networks was compared with the actual output in a figure. It shows open-loop network is more accurate than closed-loop network due to the availability of actual output from the previous step.
Citation pour cette source
Ayad Al-Rumaithi (2025). System Identification using ANN (https://fr.mathworks.com/matlabcentral/fileexchange/72094-system-identification-using-ann), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Créé avec
R2017b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS LinuxCatégories
En savoir plus sur Deep Learning Toolbox dans Help Center et MATLAB Answers
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.0.6 | Added website |
||
| 1.0.5 | description |
||
| 1.0.4 | description |
||
| 1.0.3 | figure |
||
| 1.0.2 | Added closed-loop network |
||
| 1.0.1 | file comments |
||
| 1.0.0 |
