Common Spatial Patterns (CSP)

A vectorized, quick and simple implementation of the CSP algorithm.
1,2K téléchargements
Mise à jour 19 juil. 2019

Afficher la licence

The function 'csp' performs a bearable implementation of the Common Spatial Patterns (CSP) algorithm, which consists of a binary data-driven supervised data projection of a signal by maximizing the variance of the positive class while minimizing the variance of the negative one.

Input parameters:
- X1 and X2: Signals for the positive and negative class, respectively, whose dimensions must be [classes x samples].

Output parameters:
- W: Filter matrix (mixing matrix), whose columns are spatial filters.
- lambda: Eigenvalues of each filter.
- A: Demixing matrix.

Once the W is trained, the projection of new data X must be computed as:
X_csp = W'*X;

An example of use is included in the 'csp_example.m' file.

Citation pour cette source

Víctor Martínez-Cagigal (2025). Common Spatial Patterns (CSP) (https://www.mathworks.com/matlabcentral/fileexchange/72204-common-spatial-patterns-csp), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2018a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur Discrete Multiresolution Analysis dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0